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J. Phys. A: Gen. Phys., 1970, Vol. 3. Printedin Great Britain 

The sheath at an electrode close to plasma potential 

J. G. ANDREWS and R. H. VAREY 
Marchwood Engineering Laboratories, Central Electricity Generating Board, 
Marchwood, Southampton, England 
MS. received 20th February 1970 

Abstract. I t  is shown that a sheath with a monotonic potential profile can 
exist at all negative voltages on an electrode in a plasma. When the electrode 
is close to plasma potential it is no longer valid to ignore those electrons which 
reach the electrode. The velocities with which ions approach the sheath satisfy 
a ‘sheath criterion’, which depends upon the potential drop across the sheath 
and not just on the electron temperature in the plasma. 

1. Introduction 
In  the usual analysis of a sheath covering a negatively biased electrode in a 

low-pressure plasma (Langmuir and Mott-Smith Jr. 1924, Chen 1965) it is assumed 
that electrons have a Boltzmann density distribution inside the sheath. This is a 
good approximation when the flux of electrons reaching the electrode is small com- 
pared with the random flux of electrons at the sheath edge. I n  this paper we consider 
a sheath at a negative electrode close to plasma potential. Here the assumption of a 
Boltzmann density distribution is not reasonable and it is necessary to distinguish 
between the electrons which are reflected in the sheath and those which are trans- 
mitted to the electrode. We also examine the behaviour of the so-called ‘sheath 
criterion’ (Bohm 1949) when the probe is close to plasma potential. This is a condi- 
tion for the sheath potential to grow monotonically and relates the ion velocities at the 
sheath edge to the electron temperature in the plasma. 

2. Charge density inside the sheath 
Consider a plane electrode immersed in a plasma composed of positive ions and 

thermal electrons. When the voltage applied to the electrode is very negative with 
respect to the plasma potential, an ion-rich sheath develops over the surface of the 
electrode and most electrons are reflected inside the sheath. The  ions may acquire 
energy from weak electric fields in a plasma region in front of the electrode, known as 
the ‘pre-sheath’, and when they arrive at the sheath edge they must satisfy the so- 
called sheath criterion 

& M ( v ~ - ~ ) - I  2 3kTe (1) 

where -1II is the ion mass, K is Boltzmann’s constant and T ,  is the electron temperature. 
The  symbol (} denotes averaging over the component of ion velocity ci normal to the 
plane of the electrode. The  above form of the criterion was derived by Harrison and 
Thompson (1959) and is more general than that of Bohm-in which it was assumed 
that the ions incident at the sheath edge were monoenergetic. Ignoring collisions 
inside the sheath, all ions which arrive at the sheath edge are accelerated across the 
sheath and are collected by the electrode, Hence, when the electrode potential is very 
negative, the current drawn by the electrode is almost entirely due to ions. 

As the voltage applied to the electrode is made less negative an increasing number 
of electrons have sufficient energy to reach the electrode. The  floating potential V, 
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is the potential at which the electron and ion currents are exactly equal, and is approxi- 

where n, is the ion/electron density at the sheath edge, e and m are the magnitude of the 
electron charge and mass respectively, and ui refers to the ion velocity at the sheath 
edge. Rearranging equation (2) gives 

This shows that the floating potential is typically a few times the electron temperature 
(in volts). I n  obtaining the expression for the electron current density on the right- 
hand side of (2) it has been assumed that electrons have a Boltzmann density distribu- 
tion inside the sheath, i.e. 

where V is the electrostatic potential at any point. This assumption is reasonable 
when the flux of electrons transmitted across the sheath is small compared with the 
random flux of electrons at the sheath edge. 

In this paper we are concerned in particular with the structure of the sheath when 
the potential at the electrode lies somewhere in the range between the floating potential 
and the plasma potential. In  this range it is no longer valid to assume that the trans- 
mitted flux is negligible compared with the random flux, and the Boltzmann expres- 
sion (3) for the electron density in the sheath is no longer a good approximation. 

In  general, we shall assume that the potential in the sheath is monotonic and that 
the electrons are in thermal equilibrium with a Maxwellian distribution of velocities 
at the sheath edge: 

fe = Aexp(---8). mz' 

2kTe (4) 

Some electrons have sufficient energy to reach the electrode but the rest are reflected 
inside the sheath. If V ,  is the potential drop between the sheath edge and the electrode, 
then the first group comprises all those electrons which, at the sheath edge, are in the 
velocity range 

Ignoring collisions, the transmitted electrons obey the conservation laws of mass and 
energy, and their density at any point inside the sheath is given by 

(5) 
2nkT8 e(Vs- V))1'2] ( e V )  

= + A ( ~ )  [I -erf( - exp - 
T 8  k Te 



The sheath at  an  electrode close to plasma potential 415 

where erf(y) is the error function 

At any point inside the sheath the reflected electrons lie in the velocity range 

-U < z‘, 6 U 

where U = {2e( V ,  - V)/m)1’2 and their density is given by 

(6) 
Adding equations (5)  and (6), and putting ne = n, at the sheath edge, we have 

It is convenient to define the following normalized variables: 

v, = ne/n,, 7 = eV/kTe, 7, = eVs/kTe. (8) 
The total normalized electron density becomes 

ve = __- * e t  + %er 

ns 
or, using equations (5)-(7), we have 

1 + erf{ - (vs - T ) ) ~ ’ ~  
ve = - exp 7 .  

1 + erf( -vs)1’2 
Xow consider the ions. We shall assume neutrality at the sheath edge and that 

there are no collisions or ionization inside the sheath. Applying the conservation 
laws of mass and energy, the ion density at any point inside the sheath is given by 

where fi(vi) is the ion velocity distribution function at the sheath edge. Setting 

vi = ni/ns, 4 = Mvi2/kTe 

Equations (9) and (12) are expressions for the (normalized) electron and ion densities 
as a function of (normalized) voltage 7 through the sheath. 

3. The sheath criterion 
Poisson’s equation in one dimension is 

d2 V 
dX 

eo = -e(ni-nn,). 
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Defining the non-dimensional length 

where 
x = X / h ,  

is the Debye length at the sheath edge, Poisson's equation becomes 

Now from equations (9) and (12) we note that v, and v i  are functions of 7 alone. 
Expanding (15) for small 7 inside the sheath using Taylor's theorem, we have 

- (v,' -vi')s 17 + +(V," -Vi")s 72 + . . d27 -- 
dX2 

where the prime denotes differentiation with respect to 7. For sufficiently small 7 ,  
the second term on the right-hand side of (16) is negligible compared with the first 
term, and (16) reduces to 

Hence yi decreases monotonically with X on entering the sheath only if 

Differentiating (9) and (12), setting 7 = 0 at the sheath edge and substituting in (17) 
yields 

1 

where F is given by 

In terms of the unnormalized variables, (18) is just 

Comparing inequalities (1) and (20), we see that the effect of allowing for the trans- 
mitted electrons in addition to the reflected electrons is to reduce the right-hand side 
of the inequality by a factor 1 + F(qs). When v s  is large, we have F(qS)  2: 0 and the 
effect is negligible. Thus,  when the electrode voltage is very negative the effect is small 
and previous analyses are substantially correct. On the other hand, as qs + 0 we have 
F(rls) -+ x and the right-hand side of (20) tends to zero; in this case, when the 
electrode is at plasma potential, there is no restriction imposed on the ion velocity 
distribution function at the sheath edge and the necessity for a pre-sheath disappears. 
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In  general, we find that the sheath criterion is actually dependent on the potential drop 
across the sheath. Figure 1 shows the sheath criterion as a function of the normalized 
sheath potential drop. The  criterion is satisfied on or above the line given by the 

Harrison and Thompson (1959) 
1.0 _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ - _ - _ - - - - - - - -  - - - - -  

0 -0 .5  -1.0 -1.5 -2.0 
e v, lk re 

Figure 1. \-ariation of the sheath criterion with the normalized potential drop 
across the sheath. 

equation 

In  Harrison and Thompson's (1959) analysis, which did not take into account the 
transmitted electrons, the criterion was defined by the line 

M (ai-2 ) - 1 

k T e  
= 1. - 

This appears as a horizontal line in figure 1. 

4. The potential profile 

normalized Maxwell stress at any point in the sheath as 
Multiplying both sides of equation (15) by (dT/dX) d X  and integrating gives the 

say; substituting for v, and v i  from (9) and (12) respectively in (22) and integrating 
(setting d r / d X  = 0 at the sheath edge), yields 

2 

27 + erf{ - ( r s  - 7))l:' exp 7 )  /(l + erf( - qs)ll2} + ( +((l -a) - 11) . (23) I 
Rearranging (22), and integrating from the electrode (7 = q s )  to any point in the 
sheath, we obtain the potential profile as 
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where X is measured from the point where 7 = vs.  We take the origin to be at the 
electrode rather than the sheath edge, since the sheath edge is not well defined. 
dq/dX --f 0 asymptotically as 7 -+ 0-a result which can be obtained by integrating 
(16) twice and rearranging, for small powers of 7 in the neighbourhood of the sheath 
edge. So far the analysis is quite general and applies for any reasonably well- 
behaved ion velocity distribution. In  order to evaluate an actual potential profile 
numerically, the particular ion velocity distribution must be considered. 

As an example we may suppose that the ions are monoenergetic-a case that is 
frequently considered in the literature. 

5. Numerical solution for the case of monoenergetic ions 

ity (18): 
,4t the sheath edge we set r$ = r $ o ,  corresponding to the lower bound of inequal- 

1 
0 - -__ 
- l+E'(q,) 

i.e. the ions have the minimum kinetic energy needed to satisfy the sheath criterion. 
The potential profiles for various values of the normalized potential drop across 

the sheath eV,/kT,  are given in figures 2 and 3.  In  all cases the sheath is everywhere 

- 6  

-8 

-I 0 Y 
Figure 2. Normalized potential profiles in the sheath for the range 

-10 < eVs',!kT, < -1. 

ion-rich and a self-consistent monotonic potential profile is obtained. Hence, it 
appears that the concept of a sheath is meaningful even when the potential at the 
electrode is close to the plasma potential. 
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Figure 3 .  Normalized potential profiles in the sheath for the range 
-1.0 < eYs/kTe < -0.1. 
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Figure 4. Normalized density profiles for 
eV,/kT, = -1.0 ( c $ ~  = 0.899). 

Figure 4 shows a typical set of normalized density profiles in the sheath for 
e V ,  = - 1.0 (y50 = 0.899), the curve which appears in both figures 2 and 3. The  ion 
density is attenuated as the ions are accelerated but the density of the transmitted 
group of electrons increases since they are retarded in the sheath. The  density of 
the reflected group of electrons is attenuated through the sheath and falls to zero at 
the electrode. 
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6. Conclusions 
-4 self-consistent model of a sheath at an electrode close to plasma potential can be 

obtained provided that the ions incident at the sheath edge satisfy a sheath criterion 
which is dependent on the voltage drop across the sheath. 
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